
J. Phys. A: Math. Gen. 20 (1987) 2415-2423. Printed in the U K  

A semiclassical sum rule for matrix elements of classically 
chaotic systems 

Michael Wilkinsont 
lnstituto de Fisica Gleb Wataghin, Universidade Estadual de Campinas, Campinas, 131 10, 
SP, Brazil and Department of Physics, California Institute of Technology, Pasadena, CA 
91125, USA 

Received 26 August 1986 

Abstract. In the semiclassical limit, the sum 

S(E,AE)=  IA,,,12S[€-f(€,+E,)16[AE-(E,,-€,,)1 
n m  

of matrix elements of an arbitrary operafor 
function of the Weyl symbol A(q, p )  of A: 

can be related to the classical correlation 

C,(E, t ) =  d a S ( € - H ( a ) ) A ( a ) A ( a , )  J 
S(€,  A E )  is proportional to the Fourier transform of CA( E, t )  over 1, plus a set of correction 
terms associated with periodic trajectories in phase space. 

If the system has a chaotic classical limit, the matrix elements are independently 
Gaussian distributed with mean value zero, and S( E, A € )  gives the variance of this 
distribution. 

1. Introduction 

The semiclassical quantum mechanics of systems which have a chaotic classical limit 
is still far from being thoroughly understood. This paper describes a new result 
applicable to thesepystems, which relates the matrix elements A,,, = (n la lm)  :f an 
arbitrary operator A to the correlation function of the Weyl symbol A(q, p )  of A. 

Since there is no known quantisation scheme for classically chaotic systems (and 
it is unlikely that such a scheme exists), it is not possible to write down analytic 
expressions for the eigenstates In) and Im). It is only possible to produce a statistical 
theory describing the probability distribution of the matrix elements. It is believed 
that on energy scales of size O( h ) ,  the properties of classically chaotic quantum systems 
can be modelled by random matrix theory (Pechukas 1983, Berry 1983). These results 
imply that, provided \ E ,  - E, /  O( h ) ,  the A,,,, are independent and Gaussian dis- 
tributed, with mean value zero when n # m. To characterise the distribution of the 
A,, it only remains to calculate the variance of the A,,s. 
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The principal result of this paper is a semiclassical sum rule for the matrix elements: 
the sum 

S ( E ,  A E ) =  C 1An,12S[E - $ ( E , ,  +E,)]S[AE - (En  - E,)] ( 1 . 1 )  
nm 

willpe related to the classical correlation function CA(E, t )  of the Weyl symbol A(q, p )  
of A. In ( 1 . 1 )  the Dirac 6 functions are slightly smeared out over a finite range E :  we 
could write 

2 1 exp( -5). 
6(x) =- 

( 2  7TE ) "2 

The sum S ( E ,  AE) is therefore a smooth function of E and AE. The values of E for 
the first and second 6 functions will be written and E ~ ~ ,  respectively. 

The correlation function CA(E, t )  is defined by 

CA(E,  t ) =  d a  S ( E - H ( a ) ) A ( a ) A ( a , )  (1 .3 )  I 
where a is a point (4, p )  in phase space and a ,  = ( q (  t ) ,  p ( t ) )  is the point obtained 
from a by evolution of Hamilton's equations for time t. If the values of and eAE 
are sufficiently large, then the relationship between S and CA is simple: in § 2 it will 
be shown that 

for a system with d degrees of freedom. This result has also been obtained by Feingold 
and Peres (1986), using a different and less rigorous argument. 

There are corrections to (1.4) which are rapidly varying functions of Ea and AE, 
and which become important when the 6 functions in (1.1) are not sufficiently smeared 
out. Each of these corrections is associated with a periodic trajectory of the classical 
motion in phase space. These periodic orbit corrections are calculated in § 3 for 
periodic trajectories which are isolated (have the energy E as their only parameter), 
and which are unstable. In many classically chaotic systems (K  systems) all the periodic 
orbits are of this type; the Sinai billiard (Sinai 1970) and the pseudosphere (Balazs 
and Voros 1986) are examples. 

The periodic orbit corrections oscillate more rapidly as a function of E as the 
return time T of the orbit increases, so that as is decreased it is necessary to include 
longer periodic orbits in the correction terms. Only a finite number of these periodic 
orbit corrections are meaningful, however, because the semiclassical approximations 
used are valid in the limit h + 0 with time T fixed, but break down if we make T + cc 
with h fixed. Section 4 discusses how large must be before the periodic 
orbit terms can be neglected and how small they can be before the periodic orbit 
corrections cease to be valid. 

The results contained in this paper are closely related to an expression for the 
density of states, n ( E ) ,  derived by Gutzwiller (1971, 1980). There are also close 
connections with the derivation of the Kubo formula (Kubo 1956, Greenwood, 1958). 
These relationships are discussed in 0 5. 

I t  is striking that equation (1.4) implies that the Fourier transform of the correlation 
function of any A ( a )  must be everywhere positive. It is desirable to see how this can 
be proved directly using only the laws of classical mechanics. This is done in the 
appendix. 

and 
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2. A sum rule for matrix elements 

Using the Fourier integral representation of the S functions on ( l . l ) ,  we find 

iEAt 
x e x p ( k )  Tr[air( f+~At)a ir( - t+tPt) l  (2.1) 

where O ( t )  is the propagator, f i ( t ) = X , ,  In)(ni exp(-iE,t/h). To evaluate S(E, AE) 
we have to evaluate the trace appearing in (2.1). A particularly transparent way of 
evaluating the trace in the semiclassical limit ( h  + 0) is to use a coherent state basis. 
The trace of an operator can be written 

where la) is a coherent state at the point a = (4, p )  in phas: space. The advantage of 
using a coherent state basis is that the operators A and U ( t )  act classically on the 
coherent states la). In the limit h + 0: 

a l a )  = A(a) Ia )  (2.3) 
where A ( a )  is the value of the Weyl symbol of a at the point a. For short times t 

where a ,  is the point reached by classical evolution from a for time t and fa is a 
function which describes the overlap between the coherent states la) and laf). This 
overlap has value unity at t = 0, so f a ( 0 )  = 1, and decays to zero in a time of O( h”’), 
since the coherent states have Wigner functions which decay over a range of O( h’”). 
For long times, ( a l f i ( t ) l a )  is small unless a lies very close to a periodic orbit in phase 
space, since ir(t) la) is close to laf). 

Now we use these results to evaluate (2.1). Using (2.2), (2.3), we find, in the limit 
h+0: 

1 
S ( E ,  AE) = 

(2.5) 
The integral 

has a contribution F,(E, t )  from A t  =0,  plus a set of contributions F,(E,  t )  from the 
j th  periodic orbits. The periodic orbit contributions will be discussed in 0 3. The direct 
term Fo(E, t )  can be evaluated using (2.4): 
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Now 

=(27rh)’/2j*((E - H ( a ) ) / h l I Z )  (2.8) 

where Tu is the Fourier transform of fa. In the limit h + 0, we can write this 
1 “  

( 2 5 7 )  -x  
I ( E )  = 27rh8(E - H ( a ) ) -  5 dwfe(cU) 

=27rhS(E - H ( a ) )  (2.9) 

since f u ( 0 )  = 1. We now have 

(2.10) 

where CA( E, t )  was defined in (1.3). Ignoring the periodic orbit corrections, we have 

(2.11) 

C,(E, t )  = d a  S ( E  - H ( a ) ) A ( a ) A ( a , ) .  J 
In QP 3 and 4 it will be shown that the periodic orbit corrections are rapidly oscillating 
functions of E with period O( h ) ,  so that this approximation is adequate provided that 
the smearing parameter eE > O( h ) .  

3. Periodic orbit corrections 

In this section the corrections F,(E, t )  to (2.6) from the j th  periodic orbit will be 
evaluated. Time-reversed traversals of periodic orbits must be included, as well as 
multiple repetitions, since the integral over A t  in equation (2.8) extends from --CO to +a. 

The function F,(E, t )  is the contribution to 

iEAt 
F (  E, t )  = dAt exp( k) Tr[Afi( t + i A t ) A  fi( - t  + i A t ) ]  

2Th -x 
(3 .1 )  

from the j th  periodic orbit. When calculating these periodic orbit terms a coordinate 
space representation will be used to calculate the trace, since the equation for the 
propagator is better known in this representation. The details of the calculation depend 
on the nature of the periodic orbits and the calculation will only be carried through 
for isolated unstable periodic orbits in a system with two degrees of freedom. 

In the coordinate representation, the semiclassical approximation to the propagator 
C ( t )  (Gutzwiller 1967) is 

(3.2) 

where a ( x ,  x’; t )  is the action to go from x to x’ in time t and y is the number of focal 
points between x and x’, where det(a*a/ax ax’) diverges. I t  is convenient to simplify 
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equation (3.2) by using a coordinate system in which x measures distance along the 
classical path, and y measures distance in a perpendicular direction. The dependence 
of U on y, y’ can be approximated by a quadratic form, and the matrix a2u/ax ax‘ is 
diagonal, so that 

(3 .3)  

for a system with two degrees of freedom. In equation (3.3),  U = dxldt,  U‘= dx‘ldt, 
and we have used 

Now (3.3) is used to evaluate F , ( € ,  t ) .  It is convenient to choose the x coordinate 
so that U = U’ = constant. Integrating over the internal coordinate labels using the 
stationary phase approximation gives 

ia(x,  x, A r )  + EAt  iyjr  
x I-: dAt( z) exp( h 2 (3.5)  

where Aj( T )  is the value of A(q, p )  after moving for time T around the j th periodic 
orbit and T~ is the period of the orbit. Integrating over A t  the stationary phase 
approximation gives 

where S j ( E )  is the reduced action for the j th  orbit 

and 

(3 .7)  

The coefficients of the quadratic form can be related to those of the monodromy matrix 
M of the periodic trajectory, defined by 

Using p = aslax,  p ’  = -aslax’, we find 

(3 .9 )  

(3 .10)  
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Hence equation (3.7) becomes 

U, = (2rih)’l2{det[&(E, ~ ) - - i ] } - ” ~  

which is independent of T. 

For unstable orbits in two dimensions, we have found 

(3.11) 

Id: 1 iS.(E)  iyjr  e( E, t )  = - 2 T h I  exp( h ---){det[Gj( 2 E )  - dT A,( 7)Aj( T + ;rj -I- t )  

(3.12) 

where S j ( E )  is the action and G(E) the monodromy matrix for the j th  orbit. The 
correlation function along the orbit, 

c j ( E ,  t ) =  dTAi(T)Ai(T+fTj+t) Id’ 
is a periodic function of t :  

(3.13) 

(3.14) 

The contribution to S (  E, AE) from the j th  periodic orbit therefore consists of a set of 
6 functions of AE, with amplitudes that are oscillatory functions of E. Pairing the 
contributions from the j th  orbit and its time-reversed partner, this contribution to 
S ( E ,  AE) is 

Sj(  E, AE) = -2 sin[Sj(E)/h -tyjn]{det[fij( E )  - i]}-’/* 1 amj( E ) 6  P E  -- ( 2T;h) 
1 

2 Th  m 

(3.15) 

for an unstable isolated orbit of a two-dimensional system. 

4. Limitations on the energy resolution 

The two 6 functions appearing in the definition of S ( E , A E )  are not true Dirac 6 
functions, but are smeared slightly over a range E (cf (1.2)). This is equivalent to 
introducing convergence factors into the integrals in (1.3): 

(4.1) 
If E €  >> h / T 1 ,  where T ]  is the period of the shortest periodic orbit, then none of the 
periodic orbits make a contribution to (4.1) and the approximation So(€?, AE) given 
by (2.10) is adequate. 

and E A €  are not greater than h /  T ’ ,  then the periodic orbit corrections discussed 
in Q 3 must be included. For a given value of only periodic orbits with a period 
up to h / E E  are required. Only a finite number of the periodic orbit corrections are 
meaningful for any given value of h. The reason for this is that the semiclassical 
approximations used are valid in the limit h + 0 with time T fixed, whereas to evaluate 

If 
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(4.1) in the limit E ~ ,  + O  we need to calculate the propagators f i ( r )  in the limit 
r + W  with h fixed. 

The semiclassical ( h  + 0) approximation to the propagator is valid up to a break 
time r* ,  which tends to infinity as h + 0 (Hepp 1974, Hagedorn 1980). If the system 
is chaotic, with exponentially diverging trajectories, then it is plausible that 

1 
ln(So/h) (4.2) r* - - 

Y 
where y is the Lyapounov exponent and So is some characteristic classical action of 
the system. Equation (4.2) can be justified by considering the motion of a wavepacket: 
the wavepacket has a finite size Ax - O( h ’ I 2 ) ,  and because of the exponential divergence 
of classical trajectories Ax increases exponentially. The semiclassical equations 
describing the motion of the wavepacket assume that it is so small that a quadratic 
approximation for the action is sufficient. When the wavepacket has spread a size 
comparable with the size of the system, this is no longer valid and the semiclassical 
approximation breaks down. Periodic orbit corrections for which the period is longer 
than r* are meaningless, so that E €  should satisfy 

>> h / r*  = hy/ln(So/h). (4.3) 
Similarly, the results must also be interpreted with care if eAE 6 h/r* .  Recall that 

the periodic orbit corrections to F,(E, t )  involve calculating matrix elements of the form 

(4.4) I = ( a  lAo( t + f A r ) A f i (  - t + i A t ) ( a )  

I =(.I f i ( A t ) l a ) A ( a ) A ( a f + , , / 2 )  (4.5) 

la’)= fi( -t  + i A t ) A f i (  t +iAt) la)  = A ( a , + ~ , / 2 )  f i ( A t ) l a ) .  

where a lies on a periodic orbit. Using the rule (2.3), this becomes 

since 

(4.6) 

Equation (4.6) assumes that both A t  and t are smaller than the break time, r * .  If 
t >> r* ,  and the classical motion is chaotic, it is plausible to assume that the propagator 
f i ( t  +;At) spreads the coherent state la) uniformly over phase space (on scales of size 
O( h 1’2)), so that in this limit (4.6) should be replaced by 

I a ’ ) = ( A ) f i ( A t ) ( a )  (4.7) 
where ( A )  is the average of A ( a )  over the classically allowed regions of phase space. 
For times t = r* ,  it is necessary to interpolate between (4.6) and (4.7). Not enough is 
known at present about calculating propagators in the limit t -$ CO to know how to do 
this. From these arguments, it is plausible that the function cJ(E, t )  appearing in the 
periodic orbit corrections (3.13) should be replaced by 

cJ ( E, t ) = dr[ A, ( r )  A, ( r + i r ,  + t ) - ( A ) 2 ] x (  t /  r * )  + ( A)2  (4.8) 

wheref;(x) has value unity at x = 0 and decays smoothly to zero as x +  *CO. The effect 
of this change is to smear the 6 functions appearing in (3.15) over a width 

I: 
ALE* = h/r*.  (4.9) 

To summarise the results of this section: the periodic orbit corrections are not 
required if E €  >> h / r , ,  and meaningless if E €  << h / ~ * ,  where the break time r* is given 
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by (4.2). The delta functions appearing in (3 .15)  are not true delta functions, but are 
smeared out over a range E = h / r* .  The exact form of the smearing function cannot 
be determined from known results on the long time propagator. 

5. Discussion 

The matrix elements of classically chaotic quantum systems are independently Gaussian 
distributed, and the off-diagonal elements have mean value zero. The variance of this 
distribution is given by 

where n ( E )  is the (smoothed) density of states and S ( E ,  A E )  is the sum calculated in 
this paper. 

This result should find applications in any situation where perturbation theory is 
applied to a classically chaotic system; see, for example, papers by Pechukas (1983) 
and Berry and Wilkinson (1984). The results may have important implications for the 
theory used by Pechukas (1983) to justify the application of random matrix theory to 
classically chaotic systems on energy scales smaller than O( h ) .  Pechukas introduces 
the function S ( E ,  A E ) ,  and argues that this function is a smooth function of P E  on 
length scales smaller than size O( h ) .  The results of this paper, in particular (3.16) and 
(4.7), show that S ( E ,  A € )  has structure on length scales A E * - 0 ( - h / l n  h ) .  This 
suggests that it may be possible to find deviations from random matrix theory predictions 
on length scales smaller than O ( h ) .  

The results presented in this paper are closely related to a formula due to Gutzwiller 
(1971, 1980), which expresses the density of states n ( E )  in terms of an avecage term 
no( E ) ,  plus an infinite series of periodic orbit corrections n,( E ) .  If we set A = i (the 
identity operator), then the function F ( E ,  t )  is independent of t and is just the density 
of states: 

(5.2) 
Then, setting A ( Q )  = 1, (2.10) and (3.12) yield the average term n , ( E )  and the periodic 
orbit corrections nj( E )  of Gutzwiller’s series. 

There are also connections with the Kubo formula. Expressed in terms of the 
matrix elements of (for example) the current operator the Kubo formula for the DC 

conductivity is a sum of the form (1.1) with A E  = 0, i.e. (TOC S ( E ,  0) (Greenwood 1958). 
It is well known that the Kubo formula can also be expressed as a time integral over 
the correlation function ( j ( t ) j ( O ) )  (Kubo 1956)). The results of 49 2 and 3 of this 
paper give a semiclassical calculation of this integral over the correlation function. 

A = i + F ( E ,  t )  = n ( E ) .  
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Appendix 

Equation (1.4) implies that, for any Hamiltonian system, the Fourier transform of the 
correlation function of any phase function A ( a )  is nowhere negative. This appendix 
shows how this result can be proved using only the laws of classical mechanics. 

The classical mechanics of a Hamiltonian system can be represented by the Liouville 
operator i ( t ) ,  which maps a phase space function A ( a )  to A(a , ) :  

A , ( a )  = A ( a r )  = da‘ L (a ,  a’; t )A(a ‘ )  (‘41) I 
or more formally 

14) = i ( t ) lA) .  (A21 
The Liouville operator is a unitary operator, and if the 2ystem is chaotic it has a 
continuous spectrum. Only the notation is different if L has a discrete or mixed 
spectrum. Thus we can write 

a t )  = dXIX) exp( iw(x )Nxl  (A3) I 
(Arnold and  Avez 1968). Defining 

( A b ) =  I da A * ( a ) N a )  (A4) 

we find 

which is nowhere negative. Note that the result follows from the fact that, like quantum 
evolution, classical evolution can be represented by a unitary operator. 
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